You are here

Share:

Search Technologies

Showing 1-20 of 47 results found

The Biospecimen Pre-analytical Variables (BPV) Program

The Biorepositories and Biospecimen Research Branch (BBRB) at the National Cancer Institute (NCI) has sponsored various initiatives for conducting biospecimen research. Through these initiatives, NCI seeks to advance biospecimen science and improve research reproducibility by investigating how different biospecimen collection, handling and processing procedures affect biospecimen molecular profiles. BBRB is seeking collaborators to extend these studies.

New Insect Sf9-ET Cell Line for Determining Baculovirus Titers

The National Cancer Institute (NCI) seeks licensing partners for a novel modified insect cell line, Sf9-ET, that can quickly and efficiently determine baculovirus titers during the expression of recombinant proteins from a baculovirus-based protein expression system.

Methods For Treating or Preventing Inflammation and Periodontitis

Natural products have long been considered a source of biologically active molecules against health disorders, including bone-loss related diseases. Cinnamolyoxy-mammeisin (CNM), can be isolated from Brazilian geopropolis and demonstrates anti-inflammatory activity. Researchers at the National Cancer Institute (NCI), in collaboration with researchers at the Piracicaba Dental School, University of Campinas, Brazil, have shown CNM also demonstrates inhibition of oral bone loss. This invention is available for licensing and/or co-development opportunities.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Anti-CD133 Monoclonal Antibodies as Cancer Therapeutics

Researchers at NCI developed a rabbit monoclonal antibody that recognizes the marker for CD133 and is useful in pharmacodynamic testing to inform targeted anti-cancer chemotherapy development and clinical monitoring. CD133 is a cell surface glycoprotein used as a marker and expressed in stem cells such as hematopoietic stem cells, endothelial progenitor cells and neural stem cells. The NCI seeks collaborative co-development or licensing partners for this technology.

Cancer Therapeutic based on Stimulation of Natural Killer T-cell Anti-tumor Activity

Investigators at the National Cancer Institute''s Vaccine Branch have found that beta-mannosylceramide (Beta-ManCer) promotes immunity in an IFN-gamma independent mechanism and seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize beta-ManCer.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Researchers at the National Cancer Institute (NCI) have developed an invention consisting of hydrocarbon stapled peptides that disrupt the linear ubiquitin-chain assembly complex (LUBAC), which is involved in NF-κB signaling. These peptides can be used as a therapeutic in the treatment of the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), a type of non-Hodgkin’s lymphoma, as well as inflammatory diseases. The NCI seeks licensing and/or co-development research collaborations for inhibitors of NF-κB signaling and/or treatment of ABC DLBCL, as well as inflammatory diseases.

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  The National Eye Institute seeks parties interested in licensing or collaborative research to co-develop a process for the production of regulatory B-Cells for use in auto-immune indications.

Systems and Devices for Training and Imaging an Awake Test Animal

Researchers at the National Institute on Drug Abuse (NIDA) have developed an apparatus that is used to image rodents while they are awake. The biological effects of agents on the rats can be imaged (via MRI for instance) in real time over a prolonged period of time.

Brachyury-directed Vaccine for the Prevention or Treatment of Cancers

Researchers at the NCI have developed a vaccine technology that stimulates the immune system to selectively destroy metastasizing cells. Stimulation of T cells with the Brachyury peptide promote a robust immune response and lead to targeted lysis of invasive tumor cells. NCI seeks licensing or co-development of this invention.

Use of Interleukin (IL)-34 to Treat Retinal Inflammation and Neurodegeneration

Researchers at the National Eye Institute have developed a new cytokine therapy that delivers functional interleukin 34 (IL-34) to the retina for treating ocular inflammatory diseases – such as uveitis and degenerative retinal diseases. Intraocular delivery of IL-34 protein or IL-34 gene expression system can effectively prevent retinal inflammation. Thus, it may be a promising strategy to produce long-lasting effects in suppressing abnormal retinal inflammation and preventing photoreceptor death.

Devices for Improved Tissue Cryopreservation and Recovery

Researchers at the National Eye Institute (NEI), have developed a cryopreservation and cell recovery system designed specifically for the efficient cryopreservation, transportation and subsequent thawing of monolayers and tissues on a substrate. This closed cryopreservation/defrost system allows for sterility in addition to increased viability, recovery and safety of tissues that can be used for in vitro culture or surgical transplantation.

Polymeric Delivery Platform for Therapeutics

The National Cancer Institute (NCI) seeks licensing and/or co-development research collaborations for a polymeric drug delivery platform that targets scavenger receptor A1 (SR-A1), a receptor highly expressed in macrophages, monocytes, mast cells, dendritic cells (myeloid lineages), and endothelial cells. The platform delivers various immunomodulatory therapeutic cargo including small molecule drugs, therapeutic peptides, and vaccines, to the lymphatic system and myeloid/antigen presenting cell (APC) sub-populations.

Coacervate Micoparticles Useful for the Sustained Release of Therapeutic Agents

Researchers at the National Institute on Aging (NIA) have discovered novel microparticles that are formed using a coacervation process; the biodegradable microbead or microparticle is useful for the sustained localized delivery of biologically active proteins or other molecules of pharmaceutical interest. The microparticles have a matrix structure comprised of the reaction product of at least one cationic polymer, at least one anionic polymer, and a binding component (e.g. gelatin, chondroitin sulfate, avidin).

Interleukin 24 (IL-24) to treat inflammatory diseases

Researchers at the National Eye Institute (NEI) have developed a novel therapeutic strategy of using recombinant IL-24 protein to treat inflammatory diseases that involve the proinflammatory T-helper 17 cell (Th17) response, such as uveitis, multiple sclerosis, rheumatoid arthritis, and Crohn’s disease. Researchers at the NEI seek licensing and/or co-development research collaborations for co-developing this technology as strategic partners or licensing it for commercialization.

Treatment Regimens for hetIL-15

Researchers at the National Cancer Institute (NCI) developed a treatment regimens for cancer and HIV using heterodimeric IL-15 (hetIL-15). The regimens allow access to B cell follicles, germinal centers, and tumor sites that are difficult for drug entry. A combination therapy for HIV infection is also described using hetIL-15 and a conserved element vaccine. Researchers seek licensing and/or co-development research collaborations for development and commercialization of treatment regimens for HIV infection.

NSAIDs that Assist the Treatment of Human Diseases

Researchers at the National Cancer Institute (NCI) developed compounds containing both a non-steroidal anti-inflammatory drug (NSAID) and a nitroxyl (HNO) -releasing agent that have significantly reduced toxicity, allowing their use for extended periods of time without severe side effects.The HNO-releasing moiety contained in this invention may expand the medical utility of NSAIDs. HNO releasing agents possess anticancer activity as well as good antioxidant properties, which has potential benefit for a variety of human diseases, including acute and chronic inflammation. NCI seeks parties to license or co-develop this technology.

Efficient Methods to Prepare Hematopoietic Progenitor Cells in vitro for Therapeutic Use

Multi-potential hematopoietic progenitor cells (HPC) can differentiate into any class of blood cells, and are highly useful in regenerative medicine, immunology, and cancer immunotherapy. Current methods to generate HPCs are limited either due to the use of animal products, or the high cost and low efficiency of animal product free systems. Researchers at the National Cancer Institute (NCI) have developed a protocol to prepare HPCs from human induced pluripotent stem cells (hiPSC), using human mesenchymal stem cells (hMSC) in a three-dimensional (3D) co-culture condition. Thus, they are able to generate HPCs in a fully human, autologous system, which can be used to further generate immune cells for therapy. This protocol is adaptable to mass production by bioreactors. NCI seeks licensees for these methods of generating HPCs in a 3D co-culture with hMSCs to be used in a variety of applications such as treatment of blood disorders, regenerative medicine, and antibody production.

Pages